Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(17): 26153-26169, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492142

RESUMO

This study explores the potential of municipal solid waste incineration bottom ash (MSWI BA) and coal gangue as precursors for alkali-activated cementitious materials (CG-MBA). An examination of the impact of MSWI BA content, NaOH/Na2SiO3 ratio, liquid-solid ratio, and NaOH concentration on strength and reaction through the application of diverse analytical methodologies. Results demonstrate that CG-MBA offers significant environmental benefits compared to conventional cement. When used as a construction filling material, CG-MBA exhibits a remarkable 74.5 ~ 79.2 wt% reduction in carbon dioxide emissions and 70.6 ~ 77.0 wt% reduction in energy consumption. Additionally, CG-MBA effectively immobilizes heavy metal ions in MSWI BA, with a fixation efficiency exceeding 56.0%. These findings suggest that CG-MBA is a promising sustainable solution for waste management, offering significant environmental benefits while demonstrating effective heavy metal immobilization. This approach contributes to pollution control and promotes environmental sustainability in the construction industry.


Assuntos
Metais Pesados , Eliminação de Resíduos , Resíduos Sólidos/análise , Cinza de Carvão , Álcalis , Hidróxido de Sódio , Incineração , Carvão Vegetal , Metais Pesados/análise , Carvão Mineral , Material Particulado
2.
Environ Sci Pollut Res Int ; 31(4): 5071-5085, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38110687

RESUMO

Leachate sludge is generated from the biochemical treatment sludge tank for disposing the leachate from landfill municipal solid waste (MSW). It has the characteristics of high water content and high organic matter content. Sulfoaluminate cement (SAC) is used as the main curing agent, and municipal solid waste incineration (MSWI) by-products are used as auxiliary curing agents to solidify/stabilize the leachate sludge. The influences of SAC content and MSWI by-products content on the strength and solidification mechanism of the leachate sludge are investigated by unconfined compressive strength (UCS) test and micro-observation tests. Moreover, the leaching concentration of heavy metals of the solidified samples is analyzed by leaching toxicity test. The results show that the UCS of the solidified samples increases with an increase in cement content. When the cement content is larger than 20%, the UCS of the solidified samples satisfies the strength requirement of landfill. The enhancing effect of bottom ash on the cement-solidified samples is slight. The fly ash is a good auxiliary curing agent for improving the UCS of cement-solidified samples, and the optimal dosage of fly ash is 5% and 15% for the solidified samples with 10 ~ 30% and 40 ~ 50% cement content, respectively. Ten percent fly ash can replace 10% cement to achieve better solidification effect for the solidified samples. The leaching concentration of heavy metals in the solidified sample with 30%/40% cement and 15% fly ash/bottom ash can satisfy the strength and leaching toxicity requirements of landfill. The immobilization of heavy metal of the cement and MSWI by-products solidified samples is mainly achieved through physical adsorption, physical encapsulation, ion exchange, and chemical precipitation.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão/química , Resíduos Sólidos/análise , Esgotos , Incineração/métodos , Metais Pesados/análise , Carbono/química , Eliminação de Resíduos/métodos , Material Particulado
3.
Materials (Basel) ; 15(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683315

RESUMO

Fibers are applied in construction work to improve the strength and avoid brittle failure of soil. In this paper, we analyze the impact mechanism of fiber type and length on the immobilization of microorganisms from macroscopic and microscopic perspectives with fibers of 0.2% volume fraction added to microbial-induced calcite precipitation (MICP)-treated sand. Results show the following: (1) The unconfined compressive strength (UCS) of MICP-treated sand first increases and then decreases with increasing fiber length because short fiber reinforcement can promote the precipitation of calcium carbonate, and the network formed between the fibers limits the movement of sand particles and enhances the strength of the microbial solidified sand. However, the agglomeration caused by overlong fibers leads to uneven distribution of calcium carbonate and a reduction in strength. The optimal fiber length of polypropylene, glass, and polyvinyl alcohol fiber is 9 mm, and that of basalt fiber is 12 mm. (2) The UCS of the different fiber types, from small to large, is basalt fiber < polypropylene fiber < glass fiber < polyvinyl alcohol fiber because the quality of the fiber monofilament differs. More fibers result in more a evident effect of interlacing and bending on sand and higher strength in consolidated sand.

4.
Materials (Basel) ; 15(10)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35629442

RESUMO

Microbial solidification of sand has obvious effects: energy-saving and environmental protection. It is a green and sustainable soil consolidation technology with low energy consumption, which meets the needs of high-quality development of modern economy and society. However, when clay is doped in sand, clay has an uncertain influence on the effectiveness of the microbial solidification of sand. Therefore, triaxial consolidation undrained tests before and after microbial solidification of sands with different clay content are carried out in this paper. The effects of clay content on the solidification effect of sands are compared and analyzed. The variation laws of shear strength, unconfined compressive strength, internal friction angle and the cohesion of sands with different clay content before and after microbial solidification are discussed. The failure modes of sand samples were studied and the influence mechanism of clay on the microbial solidification of sand was revealed from a micro perspective. The test results show that the failure strain and unconfined compressive strength of microbial-induced calcium carbonate precipitation (MICP) treated samples increase first and then decrease with the increase in the clay content. The unconfined compressive strength is the highest when the clay content is 9%, and the samples with low clay content (3~9%) can still retain good integrity after being destroyed. As the content of clay in the sand-clay mixture increases, the internal friction angle of the sample decreases and the cohesion increases. After MICP treatment, the internal friction angle and cohesion of the sand increase first and then decrease with the increase in clay content. There are three main contact modes between sand-clay-CaCO3. When clay content is low, clay plays a filling role. The contact mode between sand-clay and CaCO3 is mainly between sand particles and calcium carbonate and between clay particles and calcium carbonate. When clay content is high, the contact mode between particles is mainly between clay particles and calcium carbonate. Higher clay content wraps sand particles, prevents contact between calcium carbonate and sand particles and reduces the strength of sand.

5.
Waste Manag ; 105: 425-432, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32126370

RESUMO

In this study, the feasibility of using municipal solid waste incineration fly ash (MSWIFA) as additive for the strengthening of pretreated cement-stabilized soil was evaluated. Results indicated that the leaching concentrations of chromium and lead in MSWIFA after the water washing process and addition of 4% ferrous sulphate were reduced by 67% and 89%, respectively, which was lower than the limit value of Identification standard for hazardous waste (GB 5085.3-2007). After pretreatment, MSWIFA samples with ratios of 5% and 10% were blended into cement-stabilized soil with ordinary Portland cement (OPC) content of 10%, 15% and 20%. The unconfined compressive strength (UCS), internal friction angle and cohesion of the cement-stabilized soil increased with OPC and pretreated MSWIFA (PFA) content. The same effect was observed on UCS after the addition of 10% PFA as replacement of 5% OPC. In the subsequent X-ray powder diffraction test, scanning electron microscopy and leaching tests, the leaching concentrations of heavy metals in cement-stabilized soil became far lower than the limit value under the synergistic effects of the physical encapsulation of hydration products and stabilization of chemical agents. The incorporation of PFA as a supplementary material can effectively accelerate the formation of hydration products and can thus provide cleaner options for foundation reinforcement.


Assuntos
Cinza de Carvão , Metais Pesados , Carbono , Materiais de Construção , Incineração , Material Particulado , Solo , Resíduos Sólidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA